between first and second Al-H BDEs in the parent compound, AlH₃.

The presence of the unsymmetrical monobridged structure of Al₂H₂ as a genuine minimum proves that this structural type is not limited to Si_2H_2 ,^{8,14} for which solid experimental structural confirmation now exists.¹² This work surely suggests that related potential energy hypersurfaces-B2H2, BAlH2, BGaH2, AlGaH2, Ga₂H₂, SiCH₂, Ge₂H₂, GeCH₂, GeSiH₂—should be carefully searched for new unsymmetrical monobridged structures.

Acknowledgment. We thank Seung-Joon Kim, Yukio Yamaguchi, and Yaoming Xie for many helpful discussions. This research was supported by the U.S. Air Force Office of Scientific Research, Grant AFOSR-92-J-0047.

$PO_3^{-}(H_2O)_n$ Clusters. Molecular Anion Structures, Energetics, and Vibrational Frequencies

Buyong Ma, Yaoming Xie, Mingzuo Shen, and Henry F. Schaefer, III*

Contribution from the Center for Computational Quantum Chemistry, The University of Georgia, Athens, Georgia 30602. Received July 20, 1992

Abstract: The $PO_3 - (H_2O)_n$ clusters (n = 1, 2, and 3) have been studied using ab initio quantum mechanical methods. Self-consistent field (SCF), configuration interaction with single and double excitations (CISD), and coupled cluster single and double excitation (CCSD) levels of theory were employed in conjunction with basis sets of quality double-zeta (DZ), double-zeta plus polarization (DZP), and DZP plus diffuse functions. The most important finding is that the clusters prefer to form high-symmetry double donor-double acceptor hydrogen bonds between the PO₃⁻ anion and the H₂O molecules. The hydrogen bond lengths increase and the dissociation energies decrease with the addition of successive water molecules. The hydrogen bond in PO₃⁻·H₂O has a dissociation energy ($D_0 = 13.3 \text{ kcal mol}^{-1}$) about 0.5 kcal mol⁻¹ less than that for NO₃⁻·H₂O. The $D_{1k} PO_3 \cdot (H_2O)_3$ theoretical results do not agree with the experimental thermochemistry concerning the nature of the hydration of $PO_3 - (H_2O)_2$ by the third water molecule. The latter finding is consistent with the conclusions of Keesee and Castleman.

1. Introduction

Beginning with the experiments of Henchman, Viggiano, Paulson, Freedman, and Wormhoadt,¹ the metaphosphate anion, PO_3^{-} , has been shown to be relatively stable and unreactive in the gas phase.² However, there is strong laboratory evidence that the PO_3^{-} anion does not exist as a free entity in aqueous solution,³ unlike its nitrogen congener NO_3^- . This fact, together with the well-known role of PO₃⁻ in biological systems⁴ and interesting features associated with its bonding and electronic structure,⁵ has given impetus to several theoretical and experimental studies. Very recently, experiments have established that PO₃⁻ is a weaker base than I⁻ and that PO_3^- is one of the least reactive bases to have been characterized thermodynamically.⁶ Therefore, it is important to understand the unusual behavior of PO_3^- in the gaseous phase. The key reactions with water are²

$$PO_{3}^{-} + (H_{2}O)_{n} \rightarrow PO_{3}^{-}(H_{2}O)_{n}$$
$$PO_{3}^{-}(H_{2}O)_{n} + H_{2}O \rightarrow H_{2}PO_{4}^{-}(H_{2}O)_{n}$$

(4) Westheimer, F. H. Chem. Rev. 1981, 81, 313. Westheimer, F. H. Science 1987, 235, 1173. Related systems of biological significance have been the subject of many theoretical studies, for example: Pullman, A.; Berthod, H.; Gresh, N. Chem. Phys. Lett. 1975, 33, 11.

(5) Rajca, A.; Rice, J. E.; Streitwieser, A., Jr.; Schaefer, H. F. J. Am. Chem. Soc. 1987, 109, 4189.
(6) Viggiano, A. A.; Henchman, M. J.; Dale, F.; Deakyne, C. A.; Paulson, J. F. J. Am. Chem. Soc. 1992, 114, 4299.

The intermediate clusters $PO_3 \cdot (H_2O)_n$ are very important to the understanding of the properties of PO₃⁻ in both the gaseous and solution phases. Experimentally it has been shown¹ that the $PO_3 \rightarrow (H_2O)_n$ clusters are stable in the gaseous phase and that the isomerization barrier varies with the number of water molecules, n. Unfortunately, there is no theoretical research concerning the $PO_3 (H_2O)_n$ clusters. Although there is considerable laboratory thermochemical data from the important work of Keesee and Castleman,² there is very little experimental structural information concerning PO₃⁻ and its clusters. In fact, since PO₃⁻ $(H_2O)_{n+1}$ and $H_2PO_4^{-}(H_2O)_n$ are indistinguishable by mass spectrometry, there may be some uncertainty about the nature of the observed clustering as well as the isomerization behavior of PO_3^- .

Since the hydrogen bonding in the $NO_3 - H_2O$ system has been investigated previously,^{7,8} the current study attempts to make meaningful comparisons between the hydration behaviors of PO₃⁻ and NO3⁻. This paper will consider the structures and properties of the $PO_3 \cdot (H_2O)_n$ clusters, for n = 0, 1, 2, and 3. Such a theoretical investigation was explicitly called for in the 1989 laboratory study of Keesee and Castleman.²

2. Theoretical Methods

The basis sets adopted here include STO-3G (minimum basis set),⁹ double-zeta (DZ),^{10,11} double-zeta plus polarization (DZP),¹² and DZP plus diffuse functions (DZP+diff) for the P and O atoms. The basis set denoted DZP for hydrogen is the (4s/2s) set⁸ with the set of p functions having orbital exponents $\alpha_p(H) = 0.75$; for the oxygen and phosphorus atoms we chose the Huzinaga–Dunning–Hay bases¹⁰⁻¹² O(9s5p/4s2p),

⁽¹⁾ Henchman, M.; Viggiano, A. A.; Paulson, J. F.; Freedman, A.; Wormhoadt, J. J. Am. Chem. Soc. 1985, 107, 1453.

⁽²⁾ Keesee, R. G.; Castleman, A. W., Jr. J. Am. Chem. Soc. 1989, 111, 9015.

^{(3) (}a) Jencks, W. P. Acc. Chem. Res. 1980, 13, 161. (b) Ramirez, F.;
Marecek, J.; Minore, J.; Srivastava, S.; leNoble, W. J. Am. Chem. Soc. 1986, 108, 348. (c) Burgess, J.; Blundell, N.; Cullis, P. M.; Hubbard, C. D.; Misra, R. J. Am. Chem. Soc. 1988, 110, 7900. (d) Freeman, S.; Friedman, J. M.; Knowles, D. J. Am. Chem. Soc. 1987, 109, 3166. (e) Cullis, P. M.; Nicholls, Chem. Chem. Chem. 2007, 1987. D. J. Chem. Soc., Chem. Commun. 1987, 783.

⁽⁷⁾ Shen, M.; Xie, Y.; Schaefer, H. F.; Deakyne, C. A. J. Chem. Phys. 1990, 93, 3379

⁽⁸⁾ Shen, M.; Xie, Y.; Schaefer, H. F.; Deakyne, C. A. Chem. Phys. 1991, 151. 187.

⁽⁹⁾ Hehre, W. J., Stewart, R. F.; Pople, J. A. J. Chem. Phys. 1969, 51, 2659

⁽¹⁰⁾ Huzinaga, S. J. Chem. Phys. 1965, 42, 1293. (11) Dunning, T. H. J. Chem. Phys. 1970, 53, 2823.

Table I. Theoretical Total Energies, Equilibrium Geometries, and Vibrational Frequencies for PO₃⁻ (Figure 1)

	DZ SCF	DZP SCF	DZP+diff SCF	DZP CISD	DZP+diff CISD	DZP CCSD	DZP+diff CCSD
total energy, au R _e (P-O), Å	-565.22436 1.561	-565.48364 1.464	-565.49419 1.465	-566.037 56 1.482	-566.058 22 1.484	-566.12474 1.495	-566.149 93 1.498
harmonic vib freq, cm ⁻¹ A ₁ ' (P-O stre) E' (P-O stre) E' (bend) A ₂ " (umbrella)		1136 1426 544 556	1129 1407 537 549				
0	1.464A 1.465Å	DZP DZP+diff	SCF SCF			1.488Å	
	1.482A 1.484Å	DZP DZP+diff	C1SD C1SD				
0	1.495Å 1.498Å O	DZP DZP+diff	CCSD CCSD		P, 118.2*	1.498Å	
\mathbf{D}_{3h}					03	04	

Figure 1. Theoretical equilibrium geometries for the metaphosphate anion, PO₁-.

P(11s7p/6s4p) with five pure spherical d functions used as polarization functions, the orbital exponents being $\alpha_d(O) = 0.85$, and $\alpha_d(P) = 0.6$. The diffuse functions include both s and p functions on the heavy atoms and have orbital exponents^{13,14} $\alpha_s(O) = 0.0845$, $\alpha_p(O) = 0.0845$, $\alpha_s(P)$ = 0.0348, and $\alpha_p(\vec{P}) = 0.0348$.

The Hartree-Fock or self-consistent field (SCF) approach has been used to locate stationary points for several conformations via analytic first derivative techniques. Subsequently, analytic energy second derivative techniques are used to determine whether each stationary point is a local minimum. Finally, the configuration interaction method with single and double excitations (CISD)^{15,16} and the coupled cluster method including single and double excitations (CCSD)^{17,18} are used to independently optimize the geometries. For the CISD and CCSD methods, only the valence electrons were explicitly correlated. Thus the core-like (phosphorus 1s, 2s, and 2p; oxygen 1s) SCF molecular orbitals were constrained to be doubly occupied in all configurations. Also the corresponding virtual orbitals were excluded from the CISD and CCSD procedures. With the DZP basis set, the numbers of basis functions for PO_3^{-} , $PO_3^{-}H_2O$, $PO_3^{-}(H_2O)_2$, and $PO_3^{-}(H_2O)_3$ are 68, 93, 118, and 143, respectively. The CISD wave functions for PO3-, PO3-H2O, $PO_3 (H_2O)_2$, and $PO_3 (H_2O)_3$ included 30100, 116632, 318287, and 709829 configurations, respectively. With the DZP+diff basis set, the CISD wave functions for PO3⁻ and PO3⁻H2O include 59242 and 210034 configurations, respectively. The computations were carried out using the program PSI developed in this research group.

Basis set superposition errors (BSSE) were not applied in this research. With the DZP SCF method, the BSSE corrections to the $PO_3^{-1}(H_2O)_n$ dissociation energies are substantial, yielding a significant reduction in the predicted D_e and D_0 values. However, it is known¹⁹ that DZP SCF dissociation energies agree well with experiment for the water dimer and other hydrogen-bonded systems. The reason for this is a consistent approximate cancellation between the effects of basis set incompleteness and electron correlation. Thus the application of BSSE corrections to DZP SCF energetic results is a priori expected to give poor agreement with experiment. Since correlation effects are not too important for the dissociation energies predicted here, the same remarks apply to the CISD

- J. Chem. Phys. 1986, 85, 963.
- (17) Purvis, G. D.; Bartlett, R. J. J. Chem. Phys. 1982, 76, 1910. (18) Scuseria, G. E.; Janssen, C. L.; Schaefer, H. F. J. Chem. Phys. 1989, 89. 7382
- (19) See, for example: Feller, D. J. Chem. Phys. 1992, 96, 6104 and references therein.

Figure 2. The $C_{2\nu}$ global minimum equilibrium geometry for PO₃⁻·H₂O at the DZP CCSD level of theory.

Figure 3. Two closely related conformations of the PO₃-H₂O system. Both are minima with the STO-3G SCF method but collapse to the global minimum (Figure 2) when more complete basis sets are used at the SCF level.

and CCSD energetics. Ultimately, of course (for example, the DZP full CI method), the use of the DZP basis set will fail, yielding hydrogenbonding dissociation energies that are too large when a sufficiently complete description of electron correlation effects is achieved.

3. Results and Discussion

A. Metaphosphate Anion PO₃⁻. Our results for the isolated PO₃⁻ anion are presented in Table I and Figure 1. The introduction of diffuse basis functions lengthens the P-O bond slightly, but electron correlation effects increase the bond length more significantly, i.e., by 0.02 Å with the CISD method, and by 0.03 Å with the CCSD method. As expected, the harmonic vibrational frequencies with the SCF method generally become smaller when the larger DZP+diff basis set is used.

There have been several previous theoretical studies of the metaphosphate anion. For comparison, our most reliable P-O bond length is probably the DZP+diff CISD result, 1.484 Å, which is somewhat longer than previous values of 1.468 $Å^{20}$ or

⁽¹²⁾ Dunning, T. H.; Hay, P. J. In Theoretical Chemistry; Schaefer, H. F., Ed.; Plenum Press: New York, 1977; Vol. 3, p 1. (13) Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. v. R.

J. Comput. Chem. 1983, 4, 294.
 (14) Spitznagel, G. W.; Clark, T.; Schleyer, P. v. R. J. Comput. Chem.

^{1987, 8, 1109.}

 ⁽¹⁵⁾ Brooks, B. R.; Laidig, W. D.; Saxe, P.; Goddard, J. D.; Yamaguchi,
 Y.; Schaefer, H. F. J. Chem. Phys. 1980, 72, 4652.
 (16) Rice, J. E.; Amos, R. D.; Handy, N. C.; Lee, T. J.; Schaefer, H. F.

Table II. Equilibrium Geometries for the Global Minimum Structure of PO₃-H₂O (Figure 2)^a

theoretical level	$r_{e}(P_{1}-O_{2})$	$r_{e}(P_{1}-O_{3})$	$r_{e}(O_{3}-H_{6})$	$r_{e}(O_{5}-H_{6})$	$\theta_{e}(O_{3}-P_{1}-O_{4})$	$\theta_{e}(H_{6}-O_{5}-H_{7})$
DZ SCF	1.555	1.562	2.188	0.957	117.2	107.8
DZ CISD	1.580	1.588	2.154	0.974	117.2	106.3
DZ CCSD	1.601	1.610	2.157	0.958	117.3	105.3
DZP SCF	1.458	1.466	2.197	0.952	118.4	101.1
DZP CISD	1.473	1.482	2.107	0.963	118.2	99.5
DZP CCSD	1.488	1.498	2.091	0.973	118.2	98.5
DZP+diff SCF	1.460	1.467	2.216	0.952	118.4	101.5
DZP+diff CISD	1.476	1.484	2.121	0.963	118.2	99.9

^a All bond distances are in Å and angles in deg.

Table III. Harmonic Vibrational Frequencies (cm⁻¹) for the Global Minimum Structure of $PO_3 \cdot H_2O$ (Figure 2)

				DZP+diff
no.	symmetry	mode	DZP SCF	SCF
1	B	O-H stretch	4141 (3031)4	4138 (3030)4
2	A 1	O-H stretch	4084 (2948)	4080 (2945)
3	A	H-O-H bend	1846 (1347)	1824 (1332)
4	A	P-O stretch	1443 (1446)	1426 (1428)
5	B,	P-O stretch	1405 (1405)	1392 (1392)
6	A	P-O stretch	1136 (1136)	1130 (1130)
7	B ₂	puckering	716 (503)	694 (491)
8	A ₁	sym def	553 (553)	548 (548)
9	\mathbf{B}_2	O-P out-of-plane	545 (568)	539 (557)
10	B,	O-P-O bend	543 (543)	537 (537)
11	A ₂	asym torsion	408 (291)	404 (289)
12	A ₁	O.H stretch	378 (271)	365 (262)
13	A	O·H stretch	165 (158)	158 (151)
14	B	O…H stretch	82 (80)	77 (75)
15	B ₂	asym torsion	47 (47)	43 (43)

^a The values in parentheses refer to PO₃⁻·D₂O.

Figure 4. A transition state for $PO_3 \rightarrow H_2O$ obtained at the DZP SCF level of theory.

1.475 Å.^{5,21} Although the DZP+diff CCSD wave functions are more complete than the DZP+diff CISD, the CCSD method generally requires a larger basis set than DZP+diff for truly quantitative structural predictions. The DZP+diff CCSD total energy is -566.14993 hartrees (versus -566.08756 hartrees, the lowest energy reported in earlier theoretical work²⁰). Because the main goals of the present study involve the complexes of the metaphosphate anion with water molecule(s), the above results for isolated PO₃⁻ are presented for comparison and completeness.

B. Metaphosphate Anion-Water Complexes $PO_3 - H_2O$. We have investigated six arrangements of the metaphosphate anion complex with one water molecule. Two of the arrangements (those sketched in Figure 3) exist only at the minimum basis set (STO-3G) SCF level of theory and collapsed when larger basis sets were used. There are four stationary points on the SCF DZP potential energy surface (Figures 2, 4, 5, and 6). The global minimum is illustrated in Figure 2, and it is the only $PO_3 - H_2O$ minimum located in this research. The structure illustrated in Figure 4 is a transition state, and those illustrated in Figures 5

Figure 5. A C_s stationary point (with two imaginary vibrational frequencies) of PO₃⁻H₂O with a single hydrogen bond at the DZP SCF level of theory. The symmetry plane contains the water molecule and the out-of-plane P-O bond.

Figure 6. A $C_{2\nu}$ stationary point (with two imaginary vibrational frequencies) for PO₃⁻H₂O optimized at the DZP SCF level of theory.

and 6 both have two imaginary vibrational frequencies.

The optimized theoretical geometries for the global minimum are presented in Table II, and the harmonic vibrational frequencies and their assignments in Table III. The global minimum of $PO_3^- \cdot H_2O$ incorporates two distinct hydrogen bonds. In Figure 2 we note that, compared with the free anion in Figure 1, the formation of the two hydrogen bonds decreases both the $O_3P_1O_4$ angle in PO_3^- and the $H_6O_5H_7$ angle in H_2O . The bond angle in the isolated water molecule is 106° at the DZP SCF level of theory, while the $H_6O_5H_7$ angle in the complex is 101° at same theoretical level. The $O_3P_1O_4$ bond angle in $PO_3^- \cdot H_2O$ is 2° smaller than the ideal 120° found for the isolated PO_3^- anion. The P_1-O_3 and P_1-O_4 bonds increase by 0.002-0.003 Å with both the SCF and CCSD methods, and a change of less than 0.001 Å was found with the CISD method.

Meanwhile, the P_1 - O_2 bond, which does not participate in the hydrogen bonding, is about 0.006-0.009 Å shorter than the P-O bond in the free metaphosphate anion at the same theoretical level. Therefore, the PO₃⁻ moiety in the global minimum of PO₃⁻·H₂O exhibits some contribution from the Lewis-type structure⁵ i. Note

that when two hydrogen bonds are required to be connected to only one of the oxygen atoms in PO_3^- , as in Figure 4 (a transition state), then this P-O bond lengthens slightly while the other two became a bit shorter. By the same line of reasoning, the PO₃⁻ moiety thus incorporated has a greater contribution from the Lewis structure⁵ ii. This kind of behavior corroborates the classic Lewis

structure of PO₃⁻ as a resonance hybrid of the two Lewis structures i and ii.

Harmonic vibrational frequencies for the PO₃-H₂O complex are reported in Table III. There are some common features concerning the change of vibrational frequencies in PO₃-H₂O and $NO_3 - H_2O$ relative to the isolated PO_3^- and NO_3^- anions. For example, the degeneracy of the E' (A–O stretch, A = P or N) mode vibrational frequencies of the anions is removed. But in $PO_3 - H_2O$ the previously degenerate lower E' (bend) mode frequencies now differ by about 10 cm⁻¹, whereas in the NO₃⁻H₂O system this mode remains essentially degenerate.⁷ Also the hydrogen bond in $PO_3 - H_2O$ is comparable to that in $NO_3 - H_2O$; this is demonstrated by the three highest "new" vibrational modes: 716 cm⁻¹, 408 cm⁻¹, and 378 cm⁻¹ in PO₃⁻·H₂O versus 729 cm⁻¹, 316 cm⁻¹, and 210 cm⁻¹ in NO₃⁻·H₂O. However, since frequencies are mass-weighted, a force constant comparison would be more meaningful. The corresponding normal coordinate force constants (mdyn/Å) associated with the "new" modes are 0.345 (716 cm⁻¹), 0.016 (408 cm⁻¹), and 0.013 (378 cm⁻¹) in $PO_3 - H_2O$, and 0.438 (729 cm^{-1}) , 0.014 (316 cm $^{-1}$), and 0.011 (210 cm $^{-1}$) in NO₃-H₂O.

Consistent with the vibrational analysis, there are some differences between the two anions with respect to their potential surfaces.^{7,8} Two of the starting arrangements we have used, shown in Figure 3, are analogous to the structures found to be minima at the STO-3G SCF level for NO₃-H₂O. Both structures A and B (in Figure 3) of PO₃-H₂O are also minima at the STO-3G SCF level. However, for $NO_3 - H_2O$, only structure B remains a minimum at higher levels of theory. In contrast, for $PO_3 - H_2O_3$, neither A nor B remains a minimum at higher levels of theory.

For coplanar configurations, the second PO₃-H₂O stationary point is a transition state illustrated in Figure 4, which is about 3.2 kcal mol⁻¹ higher in energy than the global minimum of Figure 2. There is one imaginary vibrational frequency, corresponding to the movement of the water molecule toward the global minimum. In this structure (Figure 4), the bond angle of H_2O is significantly smaller (99.4°) than that for the isolated water molecule. Since this structure is a transition state, we did not pursue it further with correlated wave functions.

We found only one stationary point that incorporates one conventional monodonor-monoacceptor hydrogen bond, namely, that shown in Figure 5. This structure lies $2.3 \text{ kcal mol}^{-1}$ above the global minimum and has two imaginary vibrational frequencies with the DZP SCF method. It is interesting to note that the water H-O-H angle in this structure is still smaller (103.5°) than that of free $H_2O(106.3^\circ)$ at this level of theory, indicating that there is some weak interaction between the second hydrogen atom in water and the oxygen atom in PO_3^{-} .

From its position in the global minimum (Figure 2), if the H₂O molecule is rotated 90° about the C_2 axis such that the two molecular planes are perpendicular to each other, we find another stationary point with two imaginary vibrational frequencies; this structure is shown in Figure 6. This configuration is about 5.6 kcal mol⁻¹ higher in energy than the $PO_3 - H_2O$ global minimum (Figure 2).

It should be mentioned that, for all the structures discussed above, their total energies are lower than the sum of the separated PO_3^- and H_2O , even though they have energies above that of the global minimum and have one or more imaginary vibrational frequencies on their SCF potential energy surfaces.

The total energies and dissociation energies for the $PO_3 \cdot (H_2O)_n$ clusters are reported in Table VII, in which the energy differences upon the formation of the clusters are defined as follows:

 $PO_1 \rightarrow (H_2O)_n$

n = 1	$D_{e} = E(PO_{3}^{-}) + E(H_{2}O) - E(PO_{3}^{-}H_{2}O)$
n = 2	$D_e = E(PO_3^{-}) + 2E(H_2O) - E(PO_3^{-}(H_2O)_2)$
n = 3	$D_{\rm e} = E({\rm PO}_{\rm 3}^{-}) + 3E({\rm H}_{\rm 2}{\rm O}) - E({\rm PO}_{\rm 3}^{-}\cdot({\rm H}_{\rm 2}{\rm O}))$

For the SCF and CCSD methods, E is the total energy as indicated above. However, for the CISD method, the total energies of the asymptotic system PO_3 -... $(H_2O)_n$ are used instead of the sum of the separated energies, owing to the lack of size consistency in the CISD method. For the asymptote, the intermolecular distances between the PO_3^- anion and the H_2O molecules are 500 bohrs, and the geometries of the PO_3^- anion and the H₂O molecules are separately optimized with the DZP CISD or DZP+diff CISD methods. The zero-point corrected energy differences (D_0) are based on the zero-point vibrational energies evaluated using the DZP SCF and DZP+diff SCF methods, and are reported in Table VIII.

For the energetic comparisons with experimental data, the enthalpies changes are evaluated as follows:²²

$$\Delta H^{\circ} = D_{e} + \Delta E_{v}^{\circ} + \Delta (\Delta E_{v})^{298} + \Delta E_{r}^{298} + \Delta E_{1}^{298} + \Delta PV$$

where ΔE_v° is the difference between the zero-point vibrational energies of reactants and product at 0 K; $\Delta(\Delta E_v)^{298}$ is the change in the vibrational energy difference in going from 0 to 298 K. The final terms are for changes in the number of rotational and translation degrees of freedom and the work term.

Entropy changes (ΔS°) have been evaluated from standard statistical mechanical relationships,²³ and finally free energy changes (ΔG°) are calculated. The theoretical values of ΔH° , ΔS° , and ΔG° are reported in Table IX. In all calculations the vibrational frequencies evaluated at the DZP SCF and DZP+diff SCF levels are used. The standard state is 1 atm at 298 K.

Usually, theoretical and spectroscopic absolute entropies agree very well.²³ For example, our theoretical entropy value of water molecule at the DZP+diff SCF level is 45.1 cal/K-mol, exactly the same as experimental value.²³ For the reaction

$$PO_3^- + H_2O \rightarrow PO_3^- H_2O$$

the agreement between the theoretical ΔS° and the experimental ΔS° is satisfactory. The experimental $-\Delta S^{\circ}$ reported in ref 2 is $93 \pm 4 \text{ J/K-mol}$, with a 10-J/K-mol uncertainty. Thus the experimental upper bound of $-\Delta S^{\circ}$ is about 25.6 cal/K-mol, while our theoretical $-\Delta S^{\circ}$ is 25.8 cal/K mol at the DZP+diff SCF level of theory.

Compared with the experimental enthalpy change² ΔH° for the formation of the $PO_3 \rightarrow H_2O$ cluster, the theoretical value of $-\Delta H^{\circ}$ with the DZP SCF method (12.6 kcal mol⁻¹) is slightly lower, while the DZP CISD (14.8 kcal mol⁻¹) and DZP CCSD (15.1 kcal mol⁻¹) methods give values higher than the experimental $-\Delta H^{\circ}$ (12.9 kcal mol⁻¹).

Closer agreement with the experimental enthalpy change for

 $PO_3^- + H_2O \rightarrow PO_3^- H_2O$

⁽²²⁾ Del Bene, J. E.; Mettee, H. D.; Frisch, M. J.; Luke, B. T.; Pople, J. A. J. Phys. Chem. 1983, 87, 3279.

⁽²³⁾ Hout, R. F. Jr.; Levi, B. A.; Hehre, W. J. J. Comput. Chem. 1982. 3. 234

Table IV. Equilibrium Geometries for the Global Minimum Structure of PO₃-(H₂O)₂ (Figure 7)^a

theoretical level	r_{e}	r_{e}	r _e	r _e	r _e	r_{e}	θ_e	θ _e	θ_e
	(P ₁ -O ₂)	(P ₁ -O ₃)	(O ₅ -H ₇)	(O₅−H9)	(O ₃ -H ₇)	(O ₅ -H ₆)	O ₃ -P ₁ -O ₄	H ₇ -O ₅ -H9	P ₁ -O ₃ -H ₇
DZ SCF	1.564	1.557	0.956	0.957	2.271	2.166	122.9	108.5	105.1
DZ CISD	1.588	1.579	0.972	0.973	2.229	2.140	122.9	107.1	104.8
DZP SCF	1.468	1.461	0.951	0.951	2.224	2.236	121.6	101.7	107.0
DZP CISD	1.483	1.474	0.960	0.961	2.151	2.132	121.8	100.3	105.9
DZP+diff SCF	1.469	1.462	0.951	0.951	2.240	2.252	121.6	102.0	107.1

^a All bond distances are in Å and angles in deg.

Table V. Harmonic Vibrational Frequencies (cm^{-1}) for the Global Minimum Structure of PO₃- $(H_2O)_2$ at the SCF Level of Theory (Figure 7)

mode	symmetry	mmetry DZP DZP+diff		mode	symmetry	DZP	DZP+diff
sym O–H	A	4160 (3046) ^a	4155 (3043) ^a	sym def	A ₁	546 (546)	541 (541)
asym O-H	B	4157 (3044)	4152 (3041)	O-P out-of-plane	B ₂	533 (570)	528 (559)
sym O–H	A	4095 (2956)	4091 (2952)	asym torsion	$\overline{B_2}$	395 (283)	391 (281)
asym O–H	B ₁	4093 (2954)	4089 (2951)	asym torsion	A ₂	386 (274)	382 (272)
trigonal def	A_1	1846 (1348)	1825 (1332)	asym def	A_1	366 (265)	352 (256)
trigonal def	B,	1834 (1336)	1814 (1323)	asym def	B ₁	365 (260)	352 (251)
asym P-O	B	1440 (1445)	1427 (1431)	OH stretch	\mathbf{B}_{1}	161 (155)	155 (149)
sym P–O	\mathbf{A}_{1}	1405 (1407)	1399 (1397)	OH stretch	A_1	150 (143)	145 (138)
sym P–O	\mathbf{A}_{1}	1137 (1136)	1132 (1132)	OH stretch	B ₁	95 (93)	90 (88)
puckering	\mathbf{B}_2	639 (474)	674 (467)	asym torsion	A_2	51 (51)	47 (47)
puckering	$\overline{A_2}$	667 (488)	651 (476)	OH stretch	$\overline{A_1}$	49 (48)	46 (45)
asym def	B ₁	555 (555)	551 (551)	asym torsion	B ₂	38 (38)	34 (34)

^a The values in parentheses refer to $PO_3 \rightarrow (D_2O)_2$.

is found when diffuse functions are added to the basis set. Specifically, the diffuse functions decrease the CISD $-\Delta H^{\circ}$ from 14.8 (DZP) to 13.8 kcal mol⁻¹ (DZP+diffuse). With the DZP+diffuse CCSD method, $-\Delta H^{\circ}$ (PO₃⁻·H₂O) is also predicted to be 13.8 kcal mol⁻¹, indicating that theoretical value may be almost converged.

It is interesting that theory and experiment agree very well for the ΔG° value for the reaction above. The theoretical ΔG° at the DZP CCSD, DZP+duff CISD, and DZP+diff CCSD levels are within the stated error bars of Keesee and Castleman's experiment.²

Generally, the main error in the theoretical ΔH and ΔS values arises from the harmonic approximation. However, this shortcoming may be partly cancelled in evaluating theoretical ΔG values from the relationship

$\Delta G = \Delta H - T \Delta S$

In the case of the reaction above, the change of zero-point vibrational energies ΔE_v° is 2.3 kcal mol⁻¹, and $\Delta (\Delta E_v)^{298}$ is 1.9 kcal mol⁻¹. The vibrational term contribution to ΔS° is 14.0 cal/K-mol. Thus the total vibrational contribution to ΔG° is 0.0 kcal mol⁻¹ at 298 K.

This agreement means that the correlated levels of theory describe the reaction very well with respect to ΔG° , providing that vibrational term contributions cancel each other at a particular temperature. However, it is fortuitous that this temperature happened to be 298 K for the reaction above.

There is one apparent discrepancy between theory and experiment in Table IX. Namely, the experimental $PO_3 - H_2O$ enthalpy change (12.9 kcal mol⁻¹) is greater than the analogous $PO_3 - D_2O$ value (12.6 kcal mol⁻¹). Theory shows the opposite trend, with the $PO_3 - H_2O$ enthalpy change being smaller by 0.4 kcal mol⁻¹ using the DZP SCF zero-point vibrational energies (ZPVE's) and smaller by 0.2 kcal mol⁻¹ with the DZP+diffuse SCF ZPVE's. With the latter basis set the individual ZPVE's are 24.8 kcal mol⁻¹ ($PO_3 - H_2O$), 8.0 kcal mol⁻¹ ($PO_3 -$), 14.5 kcal mol⁻¹ (H_2O), 20.3 kcal mol⁻¹ ($PO_3 - D_2O$), and 10.6 kcal mol⁻¹ (D_2O). The theoretical results would appear to be more reasonable than the experiments in this regard. The D_2O complex sits lower in the potential minima, and therefore ZPVE effects should be smaller for $PO_3 - D_2O$ han for $PO_3 - H_2O$. That is, the theoretical D_0 values for $PO_3 - D_2O$ are closer to the D_e values than are the $PO_3 - H_2O$ results.

The overall effect of ZPVE is to make $D_0 < D_e$ since the PO₃⁻·H₂O and PO₃⁻·D₂O complexes have six more vibrational

Figure 7. The global minimum of $PO_3 \rightarrow (H_2O)_2$ at the DZP CISD level of theory.

degrees of freedom than do separated $PO_3^- + H_2O$ or $PO_3^- + D_2O$. However, the difference between D_0 and D_e should be less for the D_2O complex than for the H_2O complex. Thus the experimental ordering² of $PO_3^- \cdot H_2O$ and $PO_3^- \cdot D_2O$ dissociation energies appears to be incorrect.

C. Metaphosphate Anion-Two Water Clusters, PO₃-(H₂O)₂. It is important to understand the structure and properties of this cluster. The experiments of Keesee and Castleman² have suggested that for the $PO_3 \cdot (H_2O)_n$ family, $PO_3 \cdot (H_2O)_2$ is the most reactive cluster in the gas phase. Our results show that PO_3^- and $H_2O_3^$ still have a strong tendency to form double donor-double acceptor hydrogen bonds in this cluster. The theoretical optimized geometries for the global minimum of $PO_3 \cdot (H_2O)_2$ are given in Figure 7 and Table IV, and the harmonic vibrational frequencies and normal mode assignments in Table V. This global minimum may be thought of as a descendant of Figure 2, the global minimum for $PO_3 - H_2O$. The hydrogen-bonding structure, the binding energy, and the vibrational frequencies follow the same pattern as predicted for $PO_3 - H_2O$. In $PO_3 - (H_2O)_2$, the binding energy for the second water molecule is smaller than that of the first. The frequencies of the new vibrational modes due to the formation of additional hydrogen bonds are generally smaller than those of $PO_3 - H_2O$ (Table V). The frequency of the A_2'' (umbrella) vibrational mode in PO_3^- , which is the O-P out-of-plane mode in $PO_3 - H_2O$ and $PO_3 - (H_2O)_2$, decreases as successive water molecules are added.

For the cluster formation step (1, 2), the experiments of Keesee and Castleman² were only possible with D₂O. This was not

Figure 8. (a) A conformer of $PO_3 \cdot (H_2O)_2$ with two conventional hydrogen bonds. This structure was obtained at the DZ SCF level of theory. It collapses to Figure 7 at DZP SCF level of theory. (b) Several additional conformations of $PO_3 \cdot (H_2O)_2$.

expected to be a problem since the experimental dissociation energies of PO_3 ⁻ \cdot H₂O and PO_3 ⁻ \cdot D₂O differ by only 0.3 kcal mol⁻¹, as discussed above. For the reaction

$PO_3 \rightarrow D_2O + D_2O \rightarrow PO_3 \rightarrow (D_2O)_2$

the experimental ΔH° value is -11.4 kcal mol⁻¹. Our comparable DZP+diff SCF ΔH° (-10.8 kcal mol⁻¹) for PO₃⁻·(D₂O)₂ formation agrees with this deuterated ΔH° value to within 0.6 kcal mol⁻¹. As was true of the PO₃⁻·D₂O complex, the SCF $-\Delta H^{\circ}$ values are lower than the experimental $-\Delta H^{\circ}$ for the PO₃⁻·(D₂O)₂ complex. However, as was also seen for PO₃⁻·D₂O, the DZP CISD method increases $-\Delta H^{\circ}$ (1, 2) significantly, to 13.0 kcal mol⁻¹. When the latter prediction is lowered slightly to reflect the effect of diffuse basis functions, the agreement with experiment is quantitative.

Figure 8 gives some structures that appear only at the STO-3G or DZ SCF levels. With the DZP SCF method these structures collapse to Figure 7, the global minimum, and Figure 9, another $PO_3^{-}(H_2O)_2$ minimum. This general sort of behavior was also observed in the case of $PO_3^{-}H_2O$ discussed above. But unlike $PO_3^{-}H_2O$, which has only one structure that is a true minimum, for $PO_3^{-}(H_2O)_2$ we find two distinct minima. Note that Figure 9 is a minimum very close to a planar transition state. Because the transition state has a structure almost identical with the minimum, no separate structure is shown for the planar transition state. The particular structure shown in Figure 9 is a minimum because the first H_2O molecule forms double donor-double acceptor hydrogen bonds, thus blocking the site for the second H_2O

Figure 9. A C_1 minimum of PO₃⁻(H₂O)₂ at the DZP SCF level of theory. The structure of the C_3 transition state is almost identical except that all atoms are in the same plane.

molecule to form such bonds. The corresponding planar transition state has one imaginary vibrational frequency (15i cm⁻¹), which corresponds to the torsional movements (torsion 1-2-3-4 and torsion 2-3-4-5) of the H₂O molecule distorting from the constrained coplanar symmetry. This imaginary vibrational frequency is so small that removal of the C_s symmetry decreases this torsional angle to a mere 0.8° and the energy difference to 0.000 006 kcal mol⁻¹! Thus there is essentially no structural difference between this local minimum and the planar transition state. This secondary minimum lies 2.1 kcal mol⁻¹ higher above the global minimum. Even though the second H_2O forms only one hydrogen bond, there may be a very slight interaction with the oxygen atom O_6 . The bond angle O_4 - P_5 - O_6 is slightly smaller than O_6 - P_5 - O_7 . The P-O bonds behave in the same manner as for $PO_3 - H_2O$; the two complexed P-O bonds become longer, while the unencumbered bond (P_5-O_6) becomes shorter. This configuration has some character of the valence structure i, but the global minimum (Figure 7) has more of the hypervalent character of ii.

For $PO_3^{-}(H_2O)_2$, there is a "true" transition state (Figure 10) similar to the transition state for $PO_3^{-}H_2O$ (Figure 4). This structure has one imaginary vibrational frequency, corresponding to the movement of the water molecule toward the global minimum. In the $PO_3^{-}(H_2O)_2$ transition state, the three P-O bond lengths are almost equal, suggesting that all three oxygen atoms in the PO_3^{-} anion experience comparable interactions with the H₂O molecule.

Figure 11 depicts some additional stationary points for PO₃⁻ $(H_2O)_2$. It is interesting to note that there can be hydrogen bonding between H₂O molecules within the cluster. One of those structures, C in Figure 11b, has a lower energy than structures D and E in the same figure due to the weak secondary hydrogen bond formed between the two water molecules. Among these H_2O ··· H_2O stationary points, the most interesting are structures A and B of Figure 11a. The starting points for optimization of the structures reported in Figure 11a were derived from Figure 2, the global minimum for $PO_3 - H_2O$, plus a second H_2O in the plane perpendicular to the $PO_3 - H_2O$ plane. When the arrangement of the second H₂O is such that the two hydrogen atoms point toward $PO_3 \rightarrow H_2O_1$, the potential surface leads this water molecule in the direction of structure A in Figure 11a. When the orientation of the second H₂O molecule is such that the oxygen atom in H₂O points toward $PO_3 - H_2O$ (i.e., the arrangement opposite to that described above), then the potential surface leads this H₂O in the direction of structure B in Figure 11a. In the latter case the second water molecule hydrogen bonds with the water molecule in $PO_1^- H_2O$ rather than with the PO_1^- moiety. As might be expected, this hydrogen bonding is weaker than that

Table VI. Harmonic Vibrational Frequencies (cm⁻¹) for the D_{3h} Symmetry Global Minimum Structure of PO₃-(H₂O)₃ at the SCF Level of Theory (Figure 12)

mode	symmetry	DZP	DZP+diff	mode	symmetry	DZP	DZP+diff
sym H–O	E′	4174 (3057) ^a	4169 (3053) ^a	O-P out-of-plane	A2"	520 (570)	515 (559)
asym H–O	A_2'	4170 (3054)	4166 (3051)	asym torsion	Ē″	378 (272)	374 (269)
sym H–O	A_1'	4104 (2962)	4100 (2958)	asym def	A1″	366 (259)	361 (255)
asym H–O	E'	4102 (2960)	4098 (2957)	asym def	E'	354 (253)	339 (242)
trigonal def	A ₁ '	1845 (1349)	1824 (1334)	asym def	A_2'	354 (259)	339 (249)
trigonal def	E'	1827 (1332)	1808 (1319)	O-H stretch	Ḗ	154 (148)	148 (142)
PŎ	E'	1422 (1427)	1412 (1417)	OH stretch	A_{i}'	135 (129)	131 (124)
sym P–O	A_1'	1138 (1137)	1134 (1133)	OH stretch	A_{2}^{\prime}	103 (99)	97 (93)
puckering	$A_2^{\prime\prime}$	674 (450)	656 (443)	asym torsion	E″́	50 (49)	45 (44)
puckering	E″	633 (464)	618 (453)	O-H stretch	E'	45 (44)	42 (41)
asym def	Ε′	553 (553)	549 (549)	asym torsion	A2″	27 (26)	23 (23)

^a The values in parentheses refer to $PO_3^{-1}(D_2O)_3$.

Table VII. Total Energies and Dissociation Energies for the Global Minimum Structures for PO3-(H2O), Clusters

	tot	al energies (hartr	D	e (kcal mol	-1)	D_0 (kcal mol ⁻¹)			
theoretical level	n = 1	<i>n</i> = 2	n = 3	n = 1	n = 2	n = 3	n = 1	n = 2	n = 3
DZP SCF	-641.553 29	-717.620 51	-793.68560	14.5	27.5	39.1	12.1	22.9	32.4
DZP CISD	-642.26042	-718.471 99	-794.672 41ª	16.7	31.2	43.5ª	14.3	26.6	36.84
DZP CCSD	-642.40206			17.0			14.6		
DZP+diff SCF	-641.56576	-717.63517	-793.70260	13.7	26.1	37.3	11.4	21.6	30.8
DZP+diff CISD	-642.284 20			15.6			13.3		
DZP+diff CCSD ^b	-642.43091			15.6 ^b			13.3 ^b		

^aSingle-point evaluations at the DZP SCF optimized geometries. ^bSingle-point evaluations at the DZP+diff CISD optimized geometries.

of the former case, but it is still significant.

The DZP SCF total energy of the structure B in Figure 11a is -717.61624 hartrees. Since the total energy of H₂O is -76.04655 hartrees and the total energy of the structure for the global minimum of PO_3 -H₂O in Figure 2 is -641.55329 hartrees at the same theoretical level, the binding energy for the second H₂O attaching to the first H₂O is 10.3 kcal mol⁻¹. Thus the PO_3 -H₂O-H₂O binding energy is almost twice as large as that of the water dimer. It is interesting to note the geometry change within PO_3 -H₂O after it binds with the second water molecule to form PO_3 -H₂O-H₂O. For PO_3 -H₂O, the hydrogen bond length is 2.197 Å and the O₃-P₁-O₄ bond angle is 118.4° at the DZP SCF level (Table II), but the corresponding values for PO_3 -H₂O-H₂O are 2.116 Å and 117.8°. This suggests that the formation of the second hydration product increases the interaction between the anion and the first water molecule.

Figure 11c shows the energies of these five stationary points relative to the global minimum for $PO_3^{-}(H_2O)_2$. Structure A in Figure 11a has a lower energy than the structure in Figure 9, a minimum of $PO_3^{-}(H_2O)_2$. Clearly this is a result of the different orientations of the second water molecule. In Figure 9, the oxygen atom O_6 is free, whereas for the structure A in Figure 11a, all three oxygen atoms in the PO_3^{-} anion directly participate in hydrogen bonding.

D. Metaphosphate Anion–Three Water Clusters, PO_3 – $(H_2O)_3$. It is found that for the family of reactions

$$PO_3 \rightarrow (H_2O)_n + H_2O \rightarrow PO_3 \rightarrow (H_2O)_{n+1}$$

mass spectrometry² confirms the presence of the six hydrogen atoms expected for $PO_3 \rightarrow (H_2O)_3$. For the cluster formation step (n, n + 1)

$$PO_3 \rightarrow (H_2O)_n + H_2O \rightarrow PO_3 \rightarrow (H_2O)_{n+1}$$

some experimental peculiarities² are exhibited in step (2, 3). The enthalpy change $-\Delta H$ is significantly higher in this step than in steps (0, 1) and (1, 2), and the reaction rate is slower. The experimentalists (who used D₂O instead of H₂O for their observations) explain the abnormality in ΔH as being due to the isomerization

$$PO_{3} \cdot (H_{2}O)_{2} + H_{2}O \rightarrow H_{2}PO_{4} \cdot (H_{2}O)_{2}$$
(1)

The present theoretical investigation confirms that $PO_3 \cdot (H_2O)_3$ is a stable species, as indicated in Figure 12. The theoretical structure of D_{3h} symmetry appears consistent in structure, vi-

 C_{2v}

Figure 10. A transition state for $PO_3^{-}(H_2O)_2$ optimized at the DZP SCF level of theory.

Table VIII.	Zero-Point Vibrational Energy Corrected Energy
Changes for	the Formation of the $PO_3^{-1}(H_2O)_n$ Clusters (kcal mol ⁻¹) ^a

		theoretical ΔE_0											
$(n, n + 1)^b$	DZP SCF	DZP CISD	DZP CCSD	DZP+diff SCF	DZP+diff CISD								
$(0, 1), H_2O$	12.1	14.3	14.6	11.4	13.3, (13.3) ^c								
$(0, 1), D_2O$	12.7	14.9	15.2	11.9	13.8, (13.8) ^c								
$(1, 2), H_2O$	10.7	12.1		10.2									
$(1, 2), D_2O$	11.3	12.6		10.7									
$(2, 3), H_2O$	9.6	10.2		9.2									
$(2, 3), D_2O$	10.1	10.8		9.7									

^a Based on the geometries for the global minima of the clusters. ^b Refers to the reactions: $PO_3^{-}(H_2O)_n + H_2O = PO_3^{-}(H_2O)_{n+1}$. ^c DZP+diff CCSD level of theory, assuming DZP+diff CISD stationary point geometries.

Figure 11. (a) Two stationary points of $PO_3^{-}(H_2O)_2$ obtained at the DZP SCF level of theory. In both cases the C_s symmetry plane contains the P-O bond and the out-of-plane H_2O molecule. (b) Additional stationary points for $PO_3^{-}(H_2O)_2$ optimized at the DZP SCF level of theory. The symmetry planes contain two H_2O molecules and the P-O bond. (c) The energies of the stationary points shown in (a) and (b) relative to the global minimum of $PO_3^{-}(H_2O)_2$ (Figure 7).

Table IX. Thermochemical Data for the Formation of the $PO_3^{-1}(H_2O)_n$ Clusters^a

	DZP SCF		DZP+diff SCF DZP CISD DZP CC			CCSD	DZP+di	experimental datad							
$(n, n + 1)^b$	$-\Delta H^{\circ}$	$-\Delta S^{\circ}$	$-\Delta G^{\circ}$	$-\Delta H^{\circ}$	−∆S°	-∆G°	$-\Delta H^{\circ}$	$-\Delta G^{\circ}$	$-\Delta H^{\circ}$	$-\Delta G^{\circ}$	$-\Delta H^{\circ}$	$-\Delta G^{\circ}$	$-\Delta H^{\circ}$	-ΔS°	$-\Delta G^{\circ}$
(0, 1), H ₂ O	12.6	26.2	4.8	11.9	25.8	4.2	14.8	7.0	15.1	6.2	13.8	6.1	12.9	22.3	6.3
$(0, 1), D_2O$	13.0	26.7	5.0	12.1	26.3	4.3	15.2	7.2	15.5	6.4	14.0	6.2	12.6	20.8	6.4
$(1, 2), H_2O$	11.1	27.5	2.9	10.6	27.0	2.5	12.7	4.5							
$(1, 2), D_2O$	11.5	27.9	3.1	10.8	27.6	2.6	13.0	4.6					11.4	22.0	4.9
(2, 3), H ₂ O	9.9	28.8	1.3	9.5	28.1	1.1	10.5	1.9							
$(2, 3), D_2O$	10.2	29.1	1.5	9.7	28.6	1.2	11.1	2.4					16.3	36.4	5.5

^a Based on the geometries for the global minima of the clusters. The values of ΔH and ΔG are in kcal mol⁻¹, and ΔS in cal/K-mol. The standard state is 1 atm at 298 K. ^bRefers to the reactions: PO₃⁻·(H₂O)_n + H₂O = PO₃⁻·(H₂O)_{n+1}. ^c The values are the same as the DZP+diff CCSD level of theory, assuming DZP+diff CISD stationary-point geometries. ^dKeesee and Castleman, ref 2.

brational frequencies (Table VI), and characteristics of hydrogen bonding with the smaller complexes n = 1 or 2.

We must be careful to state that Keesee and Castleman² in no way exclude the possibility of a D_{3h} minimum for $PO_3 \cdot (H_2O)_3$. They do say (as confirmed here by theory) that the third dissociation energy (2, 3) for $D_{3h} PO_3 \cdot (H_2O)_3$ should be less than that for (0, 1) and (1, 2). On this basis Keesee and Castleman conclude that their data are best explained by an isomerization from the $D_{3h} PO_3 \cdot (H_2O)_3$ minimum to a lower energy structure, plausibly $(HO)_2 PO_2 \cdot (H_2O)_2$.

The D_{3h} equilibrium geometry of Figure 12 confirms that all of the PO_3 - $(H_2O)_m$ n = 1, 2, and 3, structures are of the doubledonor-double acceptor type. This is not an intuitively requiredresult. For example, in their thoughtful and excellent analysis,Keesee and Castleman² assume linear hydrogen bonds of length1.5 Å. New experiments to confirm or deny these fresh theoreticalstructures would certainly be welcome.

Figure 13 shows two configurations that exist only on the STO-3G and DZ SCF potential energy hypersurfaces. Both of these stationary points collapse to the global minimum D_{3h} structure at the DZP SCF level. We find that polarization basis functions are important in determining the nature of the hydrogen bonding in the clusters. For example, even when electron correlation effects are considered at the DZ CISD level, the C_{2v} symmetry PO₃⁻ (H₂O)₃ in Figure 13, A, does not collapse to the D_{3h} structure.

In a manner similar to $PO_3^{-}(H_2O)_2$, the lowest vibrational frequencies due to hydrogen bonding continue to decrease for $PO_3^{-}(H_2O)_3$. The smallest DZP SCF harmonic vibrational frequency is 27 cm⁻¹, and the addition of diffuse basis functions reduces this result to 23 cm⁻¹.

In one of the earliest ab initio studies of PO_3^- , Loew suggested that PO_3^- may be both an electrophile and an anion,²⁴ because

Figure 12. The global minimum equilibrium geometry for $PO_3 - (H_2O)_3$.

there is a positive charge "hole" in phosphorus. Of course, the preferred approach for a nucleophile is along a path perpendicular to the molecular plane. But Henchman refuted this possibility based on his experiments.¹ In our research, for n = 1, 2, and 3, we have tried to locate some stationary points for which the oxygen atom in a water molecule can approach the phosphorus atom along the axial path perpendicular to the PO₃⁻ plane. However, our results do not support such a possibility. In the C_{2v} coplanar

⁽²⁴⁾ Loew, L. M.; MacArthur, W. R. J. Am. Chem. Soc. 1977, 99, 1019.

Figure 13. Two structures of $PO_3 - (H_2O)_3$ predicted at the STO-3G SCF and DZ SCF levels of theory. Both structures collapse to the higher symmetry structure of Figure 12 at the DZP SCF level of theory.

approach, as the lone pair of the water oxygen atom moves toward PO_3^- , the H₂O remains far away; i.e., there is no stationary point for such orientation at the DZP SCF level. This situation is no better in the axial direction, and even for n = 2, where the third water molecule may have a greater chance to approach in this manner, the result is still negative. As previously mentioned (Figure 11a) in forming $PO_3 \rightarrow (H_2O)_3$, we may suppose that the $PO_3 \cdot (H_2O)_2$ collides with the third H_2O molecule in different orientations. The different orientations lead to the "products" in Figures 14 and 15, respectively. In both Figure 14 and 15, it may be seen that the oxygen atom in PO_3^- cannot afford to form hydrogen bonds with three hydrogen atoms as a triple acceptor. The approach of the third H_2O "breaks" some of the previously formed hydrogen bonds, and monodonor hydrogen bonding is preferred for these two stationary points. There is little difference between these two structures (Figures 14 and 15). Except for the orientation of the H_2O moieties, the PO_3^- anion is unchanged under the influence of these two different H₂O approaches. These two stationary points lie about 4.6 and 4.4 kcal mol⁻¹ higher than the global minimum, respectively.

4. Conclusions

In this paper we have presented detailed theoretical studies of the $PO_3 \cdot (H_2O)_n$ clusters. The highest theoretical level used is the DZP+diff CCSD method. For n = 0, 1, 2, and 3, the global minima are shown in Figures 1, 2, 7, and 12, respectively. The theoretical results confirm the presence of $PO_3^{-}(H_2O)_n$ clusters found experimentally. Our most important result is that the clusters tend to form high-symmetry double donor hydrogen bonds between the PO_3^- anion and the H₂O molecules. The hydrogen-bond lengths are 2.1-2.2 Å. The hydrogen bond in $PO_3^-H_2O$ is very comparable to that for $NO_3 \cdot H_2O$. It is also interesting that the hydrogen bonds can be formed between the H_2O moieties in the cluster; these have larger binding energies than that for the isolated water dimer. The theoretical results agree quantitatively with the experimental thermochemistry² for the reaction steps (0,1) and (1, 2). However the third water molecule in the D_{3k} $PO_3^{-}(H_2O)_3$ equilibrium structure is significantly less strongly

Figure 14. Another stationary point for PO_3 - $(H_2O)_3$ optimized at the DZP SCF level of theory. The C_s symmetry plane contains the upper H_2O molecule and the in-plane P-O bond.

Figure 15. A final stationary point for PO_3 -(H₂O)₃ obtained at the DZP SCF level of theory. The C_s symmetry plane contains the upper H₂O molecule and the in-plane P-O bond.

52.0

bound than observed. This prediction is consistent with the intuitive analysis of Keesee and Castleman.² Whether there is a lower energy $PO_6H_6^-$ isomer such as $(HO)_2PO_2^{-}(H_2O)_2$ remains an important unresolved question.

Acknowledgment. Helpful discussions with Dr. Y. Yamaguchi, Mr. Ching-han Hu, Mr. C. A. Richards, Jr., and Ms. Cynthia Meredith are greatly appreciated. This research was suggested by Drs. Michael Henchman, John Paulson, and Albert Viggiano. The work was supported by the U. S. Air Force Office of Scientific Research under Grant No. AFOSR-92-J-0047.